If it's not what You are looking for type in the equation solver your own equation and let us solve it.
4x^2+4x-272=0
a = 4; b = 4; c = -272;
Δ = b2-4ac
Δ = 42-4·4·(-272)
Δ = 4368
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{4368}=\sqrt{16*273}=\sqrt{16}*\sqrt{273}=4\sqrt{273}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(4)-4\sqrt{273}}{2*4}=\frac{-4-4\sqrt{273}}{8} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(4)+4\sqrt{273}}{2*4}=\frac{-4+4\sqrt{273}}{8} $
| -4(-3-7x)=34+5x | | 23n=8 | | 0.7c+2=0.5 | | 96=-6(3x-2)+6x | | -15x=400 | | 11c-12c=-8 | | -3(1+3x)=-6(x-7) | | 12=3+9x | | -4(-2x-4)=5x+19 | | -19t+30t-4=7 | | -3d+5=-4 | | -4(2x-4)=5x+19 | | 7.5+25x=250 | | -5+7x=1+8x | | X-14.6=2.96x | | 3x+.25=10 | | -6x+4=-3x-8 | | 5x=0x | | 3(j-3)=21 | | n^2+2n−2=0 | | z-1/4=8 | | 12/1=x/100 | | 11-3/4x=4 | | x/12=100/1 | | 8y-10=3y+5y | | 1/100=x/12 | | 10k=220 | | 7x–12=37 | | u-4.8=7.6;u | | c+1/8=5/8 | | -13z+13z+-2z+8=-4 | | -4x-4=6+2x |